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11.1 Introduction

Deep learning methods have become increasingly popular in recent years
because of their tremendous success in image classification [19], speech recog-
nition [20] and natural language processing tasks [60]. In fact, deep learning
methods have regularly won many recent challenges in these domains [19]. The
great success of deep learning mainly comes from specially designed structures
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of deep nets, which are able to learn discriminative non-linear features that
can facilitate the task at hand. For example, the specially designed convolu-
tional layers of CNN allow it to extract translation-invariant features from
images while the max pooling layers of CNN help to reduce the parameters to
be learned. In essence, the majority of existing deep learning algorithms can
be used as powerful feature learning/extraction tools, i.e., the latenet features
extracted by deep learning algorithms are the learned new representations.
In this chapter, we will review classical and popular deep learning algorithms
and explain how they can be used for feature representation learning. We will
also discuss how they are used for hierarchical and disentangle representation
learning, and how they can be applied for various domains.

11.2 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) is an undirected graphical model
that defines a probability distribution over a vector of observed, or visible,
variables v ∈ {0, 1}m and a vector of latent, or hidden, variables h ∈ {0, 1}d,
where m is the dimension of input features and d is the dimension of the
latent features. It is widely used for unsupervised representation learning.
For example, v can be the bag-of-word representation of documents or the
vectorized binary images and h is the learned representation for the input
data. A typical choice is that d < m, i.e., learning compact representation.
Figure 11.1(a) gives a toy example of an RBM. In the figure, each node of
the hidden layer is connected to each node in the visible layer, while there
are no connections between hidden nodes or visible nodes. Figure 11.1(b)
is a simplified representation of RBM, where the connection details between
hidden layers and visible layers are simplified. We will begin by assuming both
v and h as binary vectors, i.e., elements of v and h can only take the value
of 0 or 1. The extension to real valued input x will be introduced 11.2.2. An
RBM defines a joint probability over v and h as,

P (v,h) =
1

Z
exp(−E(v,h)) (11.1)

where Z is the partition function defined as Z =
∑

v

∑
h exp(−E(v,h)), and

E is an energy function given by

E(v,h) = −hTWv − bTh− cTv (11.2)

here W ∈ Rd×m is a matrix of pairwise weights between elements of v and h
(see figure 11.1(a)), while b ∈ Rd×1 and c ∈ Rm×1 are biases for the hidden
and visible variables, respectively1.

1For simplicity, bias terms are not shown in Figure 11.1.
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Since there are no explicit connections between hidden units in an RBM,
given a randomly selected training data v, the hidden units are independent
of each other, which gives P (h|v) =

∏d
i=1 P (hi|v), and the binary state, hi,

i = 1, . . . , d, is set to 1 with conditional probability given as,

P (hi = 1|v) = σ
( m∑
j=1

Wijvj + bi
)

(11.3)

where σ(·) is the sigmoid function defined as σ(x) = (1 + exp(−x))−1. Simi-
larly, given h, the visible units are independent of each other. Thus, we have
P (v|h) =

∏m
j=1 P (vj |h), and the binary state, vj , j = 1, . . . ,m, is set to 1

with conditional probability given as

P (vj = 1|h) = σ(

d∑
i=1

Wijhi + vj) (11.4)

With the simple conditional probabilities given by Eq.(11.3) and Eq.(11.4),
sampling from P (h|v) and P (v|h) becomes very efficient. RBMs have gen-
erally been trained using gradient ascent to maximize the log-likelihood l(θ)
for some set of training vectors V ∈ Rm×n, where θ = {W,b, c} is the set of
variables to be optimized. The log-likelihood l(θ) is written as

l(θ) =
1

n
logP (V) =

1

n

n∑
i=1

logP (vi) (11.5)

The derivative of logP (v) w.r.t variable W is given as,

∂logP (v)

∂W
=
∑
h

P (h|v)hvT −
∑
ṽ

∑
h

P (ṽ,h)hṽT (11.6)

where ṽ ∈ {0, 1}m is an m-dimensional binary vector. The first term in
Eq.(11.6) can be computed exactly. This term is often referred to as the pos-
itive gradient. It corresponds to the expected gradient of the energy with
respect to P (h|v). The second term in Eqs.(11.6) is known as the negative
gradients, which is expectation over the model distribution P (v,h). It is in-
tractable to compute the negative gradients exactly. Thus, we need to approx-
imate the negative gradients by sampling v from P (v|h) and sampling h from
P (h|v) by maintaining a Gibbs chian. For more details, we encourage readers
to refere to Contrastive Divergence [62].

11.2.1 Deep Belief Networks and Deep Boltzmann Machine

RBMs can be stacked and trained in a greedy manner to form so-called
Deep Belief Networks (DBN) [21] . DBNs are graphical models which learn
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(a) RBM (b) RBM (c) 3-layer DBN (d) 3-layer DBM

FIGURE 11.1: An illustration of RBM, DBN and DBM

to extract a deep hierarchical representation of the training data. They model
the joint distribution between observed vector v and the l hidden layers as:

P (x,h1,h2, . . . ,hl) =

(
l−2∏
k=0

P (hk|hk+1)

)
P (hl−1,hl) (11.7)

where v = h0. P (hk−1|hk) is a conditional distribution for the visible units
conditioned on the hidden units of the RBM at level k, and P (hl−1,hl) is
the visible-hidden joint distribution in the top-level RBM. This is illustrated
in Figure 11.1(c). DBN is able to learn hierarchical representation [33]. The
low-level hidden representation such as h1 captures low-level features while
the high-level hidden representation such as h3 captures more complex high-
level features. Training of DBN is done by greedy layer-wise unsupervised
training [21]. Specifically, we first train the first layer as an RBM with the
raw input v. From the first layer, we obtain the latent representation being
the mean activations P (h1|h0) or samples of P (h1|h0), which will then be
used as input to of the second layer to update W2. After all the layers are
trained, we can finetune all the parameters of DBN with respect to a proxy
for the DBN log- likelihood, or with respect to a supervised training criterion
by adding a classifier such as softmax function on top of DBN.

A deep Boltzmann machine (DBM) [51] is another kind of deep generative
model. Figure 11.1(d) gives an illustration of a 3 hidden layer DBM. Unlike
DBN, it is an entirely undirected model. Unlike RBM, the DBM has several
layers of latent variables (RBMs have just one). Within each layer, each of
the variables are mutually independent, conditioned on the variables in the
neighboring layers. In the case of a deep Boltzmann machine with one visible
layer v, and l hidden layers, h1, h2 and hl, the joint probability is given by:

P (v,h1,h2, . . . ,hn) =
1

Z
exp(−E(v,h1,h2, . . . ,hn)) (11.8)

where the DBM energy function is defined as:

E(v,h1,h2, . . . ,hn) = −(

l−1∑
k=0

hkWkhk+1)−
∑
k

bkhk (11.9)
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and v = h0, Wk is weight matrix to capture the interaction between hk and
hk+1 and bk is the bias.

The conditional distribution over one DBM layer given the neighboring
layers is factorial. In the example of the DBM with two hidden layers, these
distributions are P (v|h1), P (h1|v,h2) and P (h2|h1). The distribution over
all hidden layers generally does not factorize because of interactions between
layers. In the example with two hidden layers, P (h1,h2|v) does not factorize
due to the interaction weights W1 between h1 and h2 which render these
variables mutually dependent. Therefore, sampling from P (h1,h2|v) is diffi-
cult while training of DBM using gradient ascent methods require to sample
from P (h1,h2|v). To solve this problem, we use mean-filed approximation to
approximate P (h1,h2|v). Specifically, we define

Q(h1,h2) =
∏
j

Q(h1j |v)
∏
k

Q(h2k|v) (11.10)

The mean field approximation attempts to find a member of this family of
distributions that best fits the true posterior P (h1,h2|v) by minimizing KL-
divergence between Q(h1,h2) and P (h1,h2|v). With the approximation, we
can easily sample h1 and h2 from Q(h1,h2) and then update the parameters
using gradient ascents with these samples [51].

11.2.2 RBM for Real-Valued Data

In many real world applications such as image and audio modeling, the
input features v are often real-valued data. Thus, it is important to ex-
tend RBM for modeling real-valued inputs. There are many variants of RBM
which defines the probability over real-valued data such as Gaussian-Bernoulli
RBMs [69], Mean and variance RBM [22] and Spike and Slab RBMs [8].

Gaussian-Bernoulli RBM (GBM) is the most common way to handle real-
valued data, which has binary hidden units and real-valued visible units. It
assumes the conditional distribution over the visible units being a Gaussian
distribution whose mean is a function of the hidden units. Under this assump-
tion, GRBM defines a joint probability over v and h as in Eq.(11.1) with the
energy function given as

E(v,h) = −hTW(v � β)− bTh− 1

2
v − cT (β � (v − c)) (11.11)

where β ∈ Rm×1 is the precision vector with the i-th element βi being the
precision of vi. � is the Hadamard operation. Then the conditional probability
of P (v|h) and P (h|v) are

P (h|v) =

d∏
i=1

P (hi|v) =

d∏
i=1

σ(bi +

m∑
j=1

Wijviβi) (11.12)
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P (v|h) =

m∏
j=1

P (vj |h) =

m∏
j=1

N (vj |bj +

d∑
i=1

Wijhi, β
−1
i ) (11.13)

where N (vj |bj +
∑d
i=1Wijhi, β

−1
i ) is the Gaussian distribution with mean

bj +
∑d
i=1Wijhi and variance β−1i .

While the GRBM has been the canonical energy model for real-valued
data, it is not well suited to the statistical variations present in some types of
real-valued data, especially natural images [31]. The problem is that much of
the information content present in natural images is embedded in the covari-
ance between pixels rather than in the raw pixel values. To solve these prob-
lems, alternative models have been proposed that attempt to better account
for the covariance of real-valued data. Mean and Covariance RBM (mcRBM) is
one of the alternatives. The mcRBM uses its hidden units to independently
encode the conditional mean and covariance of all observed units. Specifically,
the hidden layer of mcRBM is divided into two groups of units: binary mean
units h(m) and binary covariance units h(c). The energy function of mcRBM
is defined as the combination of two energy functions:

Emc(v,h
(m),h(c)) = Em(v,h(m)) + Ec(v,h

(c)) (11.14)

where Em(v,h(m)) is the standard Gaussian-Bernoulli energy function defined
in Eq.(11.11), which models the interaction between real-valued v input and
hidden units h(m); and Ec(v,h

(c)) models the conditional covariance informa-
tion, which is given as

Ec(v,h
(c)) =

1

2

∑
j

h
(c)
j (vT r(j))2 −

∑
j

b
(c)
j h

(c)
j (11.15)

The parameter r(j) corresponds to the covariance weight vector associated

with h
(c)
j and b(c) is a vector of covariance offsets.

11.3 AutoEncoder

An autoencoder (AE) is a neural network trained to learn latent represen-
tation that is good at reconstructing it’s input [4]. Generally, an autoencoder
is composed of two parts, i.e., an encoder f(·) and a decoder g(·). An illustra-
tion of autoencoder is shown in Figure 11.2(a). The encoder maps the input
x ∈ Rm to latent representation h ∈ Rd as h = f(x) and f(·) is usually a one
layer neural network, i.e., f(x) = s(Wx + b), where W ∈ Rd×m and b ∈ Rd
are the weights and bias of the encoder. s(·) is a non-linear function such as
sigmoid and tanh. A decoder maps back the latent representation h into a
reconstruction x̃ ∈ Rm as x̃ = g(h) and g(·) is given as g(h) = s(W

′
h + b′),
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where W
′ ∈ Rm×d and b ∈ Rm are the weights and bias of the decoder. Note

that the prime symbol does not indicate matrix transposition. The parame-
ters of autoencoder, i.e., θ = {W,b,W′,b′} are optimized to minimize the
reconstruction error. Depending on the appropriate distribution assumptions
of the input, the reconstruction error can be measured in many ways. The most
widely used reconstruction error is the squared error L(x, x̃) = ‖x− x̃‖22. Al-
ternatively, if the input is interpreted as either bit vectors or vectors of bit
probabilities, cross-entropy of the reconstruction can be used

LH(x, x̃) = −
d∑
k=1

[xk log x̃k + (1− xk log(1− x̃k))] (11.16)

By training an autoencoder that is good at reconstructing input data, we
hope that the latent representation h can capture some useful features. The
identity function seems a particularly trivial function to be trying to learn,
which doesn’t result in useful features. Therefore, we need to add constraint
to autoencoer to avoid trivial solution and learn useful features.

The autoencoder can be used to extract useful features by enforcing h to
have smaller dimension than x, i.e., d < m. An autoencoder whose latent di-
mension is less than the input dimension is called undercomplete autoencoder.
Learning an undercomplete representation forces the autoencoder to capture
the most salient features of the training data [15]. In other words, the latent
representation h is a distributed representation which captures the coordi-
nates along the main factors of variation in the data [15]. This is similar to
the way that the projection on principal components would capture the main
factors of variation in the data. Indeed, if there is one linear hidden layer, i.e.,
no activation function applied, and the mean squared error criterion is used
to train the network, then the d hidden units learn to project the input in
the span of the first d principal components of the data. If the hidden layer is
non-linear, the auto-encoder behaves differently from PCA, with the ability
to capture multi-modal aspects of the input distribution.

Another choice is to constraint h to have larger dimension than x, i.e.,
d > m. An autoencoder whose latent dimension is larger than the input dimen-
sion is called overcomplete autoencoder. However, due to the large dimension,
the encorder and decoder are given too much capacity. In such cases, even a
linear encoder and linear decoder can learn to copy the input to the output
without learning anything useful about the data distribution. Fortunately, we
can still discover interesting structure, by imposing other constraints on the
network. One most widely used constraint is the sparsity constraint on h. An
overcomplete autoencoder with sparsity constraint is called sparse autoen-
coder, which will be discussed next.
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(a) Autoencoder (b) Denoising AE

FIGURE 11.2: An illustration of autoencoder and denoising autoencoder

11.3.1 Sparse Autoencoder

A sparse autoencoder is an overcomplete authoencorder which tries to
learn sparse overcomplete codes that are good at reconstruction [43]. A sparse
over-complete representation can be viewed as an alternative “compressed”
representation: it has implicit straightforward compressibility due to the large
number of zeros rather than an explicit lower dimensionality. Given the train-
ing data X ∈ Rm×N , the objective function is given as

min
W,b,W′ ,b′

1

N

N∑
i=1

L(xi, x̃i) + αΩ(hi) (11.17)

where N is number of training instances. xi is the i-th training instance, hi
and x̃i are the corresponding latent representation and reconstructed features.
Ω(hi) is the sparsity regularizer to make hi sparse and α is a scalar to control
the sparsity. Many sparsity regularizer can be adopted. One popularly used
is the `1-norm, i.e., Ω(hi) = ‖hi‖1 =

∑d
j=1 |hi(j)|. However, the `1-norm is

non-smooth and not appropriate for gradient descent. An alternative is to use
the smooth sparse constraint based on KL-divergence. Let ρj , j = 1, . . . , d be
the average activation of hidden unit j (averaged over the training set) as

ρj =
1

N

N∑
i=1

hi(j) (11.18)

The essential idea is to enforce ρj to be close to ρ, where ρ is a small value
close to zero (say ρ = 0.05). By enforcing ρj be close to ρ, we would like
the average activation of each hidden neuron j to be close to 0.05 (say). This
constraint is satisfied when the hidden units activations are mostly near 0. To
achieve that ρj is close to ρ, we can use the KL-divergence as

d∑
j=1

KL(ρ||ρj) =

d∑
j=1

ρ log
ρ

ρj
+ (1− ρ) log

1− ρ
1− ρj

(11.19)

KL(ρ||ρj) is a convex function with it’s minimum of when ρj = ρ. Thus,
minimizing this penalty term has the effect of causing ρj to be close to ρ,
which achieves the sparse effect.
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(a) 1st Autoencoder (b) 2nd Autoencoder (c) Finetuning

FIGURE 11.3: An illustration of 2-layer stacked autoencoder

11.3.2 Denoising Autoencoder

The aforementioned autoencoders add constraints on latent representa-
tions to learn useful features. Alternatively, denoising autoencoder uses the
denoising criteria to learn useful features. In order to force the hidden layer
to discover more robust features and prevent it from simply learning the iden-
tity, denoising autoencoder train the autoencoder to reconstruct the input
from a corrupted version of it [63]. An illustration of denoising autoencoder is
shown in Figure 11.2(b). In the figure, the clean data x is first corrupted as a
noisy data x̄ by means of a stochastic mapping qD(x̄|x). The corrupted data
x̄ is then used as input to an autoencoder, which outputs the reconstructed
data x̃. The training objective of a denoising autoencoder is then to make
reconstructed data x̃ close to the clean data x as L(x, x̃).

There are many choices of the stochastic mapping such as (1) Additive
isotropic Gaussian noise (GS): x̄|x ∼ N(x, σI); It is a very common noise
model suitbale for real valued inputs(2) Masking noise (MN): a fraction ν of
the elements of x (chosen at random for each example) is forced to 0; and
(3) Salt-and-pepper noise (SP): a fraction ν of the elements of x (chosen at
random for each example) is set to their minimum or maximum possible value
(typically 0 or 1) according to a fair coin flip. The masking noise and salt-and-
pepper noise are natural choices for input domains which are interpretable as
binary or near binary such as black and white images or the representations
produced at the hidden layer after a sigmoid squashing function [63].

11.3.3 Stacked Autoencoder

Denoising autoencoders can be stacked to form a deep network by feeding
the latent representation of the DAE found on the layer below as input to
the current layer as shown in Figure 11.3, which are generally called stacked
denosing autoencoder (SDAE). The unsupervised pre-training of such an ar-
chitecture is done one layer at a time. Each layer is trained as a DAE by mini-
mizing the error in reconstructing its input. For example, in Figure 11.3(a), we
train the first layer autoencoder. Once the first layer is trained, we can train
the 2nd layer with the latent representation of the fist autoencoder, i.e., h1,
as input. This is shown in Figure 11.3(b). Once all layers are pre-trained, the
network goes through a second stage of training called fine-tuning, which are
typically to minimize prediction error on a supervised task. For fine-tuning,
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we first add a logistic regression layer on top of the network as shown in Fig-
ure 11.3(c) (more precisely on the output code of the output layer). We then
train the entire network as we would train a multilayer perceptron. At this
point, we only consider the encoding parts of each auto-encoder. This stage
is supervised, since now we use the target class during training.

11.4 Convolutional Neural Networks

The Convolutional Neural Network (CNN or ConvNet) has achieved great
success in many computer vision task such as image classification [32], seg-
mentation [36] and video action recognition [55]. The specially designed archi-
tecture of CNN are very powerful in extracting visual features from images,
which can be used for various tasks. An example of a simplified CNN is shown
in Figure 11.4. It is comprised of three basic types of layers, which are convolu-
tional layers for extracting translation-invariant features from images, pooling
layers for reducing the parameters and fully-connected layers for classification
tasks. CNNs are mainly formed by stacking these layers together. Recently,
dropout layers [56] and residual layers [19] are also introduced to prevent CNN
from overfitting and to ease the training of deep CNNs, respectively. Next, we
will introduce the basic buliding blocks of CNNs and how CNN can be used
for feature learning.

FIGURE 11.4: An illustration of CNN

The Convolutional Layer : As the name implies, the Conv layer is the
core building block of a CNN. The essential idea of a Conv layer comes to
the observation that natural images have the property of being “stationary”,
which means that the statistics of one part of the image are the same as any
other part. For example, a dog can appear in any locations of an image. This
suggests that the dog feature detector that we learn at one part of the image
can also be applied to other parts of the image to detect dogs, and we can use
the same features at all locations. More precisely, having learned features over
small (say 3x3) patches sampled randomly from the larger image, we can then
apply this learned 3x3 feature detector anywhere in the image. Specifically,
we can take the learned 3x3 features and “convolve” them with the larger
image, thus obtaining a different feature activation value at each location in
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the image. The feature detector is called a filter or kernel in ConvNet and
the features obtained is called a feature map. Figure 11.5 gives an example
of convolution operation with the input as the 5x5 matrix and the kernel
as the 3x3 matrix. The 3x3 kernel slides over the 5x5 matrix from left to
right and top to down, which generates the feature map shown on the right.
The convolution is done by multiplying the kernel with the sub-patch of the
input feature map and then sum together. For example, the calculation of
the gray sub-patch in 5x5 matrix with the kernel is given in the figure. There

FIGURE 11.5: An illustration of convolution operation

are three parameters in a Conv layer, i.e., the depth, stride and zero-padding.
Depth corresponds to the number of filters we would like to use. A Conv
layer can have many filters each learning to look for something different in
the input. For example, if the first Conv layer takes as input the raw image,
then different neurons along the depth dimension may activate in presence
of various oriented edges, or blobs of color. In the simple ConvNet shown in
Figure 11.4, the depth of the first convolution and second convolution layers
are 4 and 6, respectively. Stride specifies how many pixels we skip when we
slide the filter over the input feature map. When the stride is 1 then we move
the filters one pixel at a time as shown in Figure 11.5. When the stride is 2
then the filters jump 2 pixels at a time as we slide them around. This will
produce smaller output volumes spatially. It will be convenient to pad the
input volume with zeros around the border, which is called zero-padding. The
size of this zero-padding is a hyperparameter. The nice feature of zero padding
is that it will allow us to control the spatial size of the output volumes. Let
the input volume be W ×H×K, where W and H are width and height of the
feature map and K is the number of feature maps. For example, for a color
image with RGB channels, we have K = 3. Let the the receptive field size
(filter size) of the Conv Layer be F , number of filters be K̃, the stride with
which they are applied be S, and the amount of zero padding used on the
border be P , then the output volume after convolution is W̃ × H̃ × K̃, where
W̃ = (W − F + 2P )/S + 1 and H̃ = (H − F + 2P )/S + 1. For example, for a
7× 7× 3 input and a 4× 3× 3 filter with stride 1 and pad 0 we would get a
5× 5× 4 output.

The convolution using filters is linear operation. After the feature maps are
obtained in a Conv layer, a nonlinear activation function will be applied on
these feature maps to learn non-linear features. Rectified linear unit (ReLU) is
the most widely used activation function for ConvNet, which is demonstrated
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FIGURE 11.6: An illustration of max pooling operation

to be effective in alleviating the gradient vanishing problem. A rectifier is
defined as f(x) = max(0, x).

The Pooling Layer: Pooling layers are usually periodically inserted in-
between successive Conv layers in a CNN. They aim to progressively reduce
the spatial size of the representation, which can help reduce the amount of
parameters and computation in the network, and hence to also control over-
fitting. The pooling layer operates independently over each activation map
in the input, and scales its dimensionality using the max function. The most
common form is a pooling layer with filters of size 2x2 applied with a stride of
2, which downsamples every depth slice in the input by 2 along both width and
height, discarding 75% of the activations. Every max operation would in this
case be taking a max over 4 numbers and the maximum value of the 4 numbers
will go to next layer. An example of max pooling operation is shown given in
Figure 11.6. Hence, during the forward pass of a pooling layer it is common
to keep track of the index of the max activation (sometimes also called the
switches) so that gradient routing is efficient during backpropagation.

Though max pooling is the most popular pooling layer, a CNN can also
contain general-pooling. General pooling layers are comprised of pooling neu-
rons that are able to perform a multitude of common operations including
L1/L2-normalization, and average pooling. An example of max pooling

The Fully Connected Layer : Neurons in a fully connected layer have
full connections to all activations in the previous layer, as shown in Figure 11.4.
The fully connected layers are put at the end of a CNN architecture, i.e., after
several layers of Conv layer and max pooling layers. With the high level fea-
tures extracted by the previous layers, fully connected layers will then attempt
to produce class scores from the activations, to be used for classification. The
output of the fully connected layer will then be put in a softmax for classifi-
cation. It is also suggested that ReLu may be used as the activation function
in fully connected layer as to improve performance.

11.4.1 Transfer Feature Learning of CNN

In practice, training an entire Convolutional Network from scratch (with
random initialization) is rare as (1) it is very time consuming, requires many
computation resources and (2) it is relatively rare to have a dataset of suffi-
cient size to train a ConvNet. Therefore, instead, it is common to pre-train a
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ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million
images with 1000 categories), and then use the ConvNet either as an initializa-
tion or a fixed feature extractor for the task of interest [53]. There are mainly
two major Transfer Learning scenarios, which are listed as follows:

• ConvNet as a fixed feature extractor: In this scenario, we take a ConvNet
pretrained on ImageNet, remove the last fully-connected layer, then treat
the rest of the ConvNet as a fixed feature extractor for the new dataset.
With the extracted features, we can train a linear classifier such as Linear
SVM or logistic regression for the new dataset. This is usually used
when the new dataset is small and similar to original dataset. For such
dataset, training or finetuning a ConvNet is not practical as ConvNet
are prone to overfitting to small dataset. Since the new dataset is similar
to original dataset, we can expect higher-level features in the ConvNet
to be relevant to this dataset as well.

• Fine-tuning the ConvNet: The second way is to not only replace and
retrain the classifier on top of the ConvNet on the new dataset, but to
also fine-tune the weights of the pretrained network using backpropa-
gation. The essential idea of fine-tuning is that the earlier features of a
ConvNet contain more generic features (e.g. edge detectors or color blob
detectors) that should be useful to many tasks, but later layers of the
ConvNet becomes progressively more specific to the details of the classes
contained in the original dataset. If the new dataset is large enough, we
can fine-tune all the layers of the ConvNet. If the new dataset is small
but different from original dataset, then we can keep some of the ear-
lier layers fixed (due to overfitting concerns) and only fine-tune some
higher-level portion of the network.

11.5 Word Embedding and Recurrent Neural Networks

Word embedding and recurrent neural networks are the state-of-the-art
deep learning models for natural language processing tasks. Word embedding
learns word representation and recurrent neural network utilizes word embed-
ding for sentence or document feature learning. Next, we introduce the details
of word embedding and recurrent neural networks.

11.5.1 Word Embedding

Word embedding, or distributed representation of words, is to represent
each word as a low dimensional dense vector such that the vector represen-
tation of words can capture synthetic and semantic meanings of words. The
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low dimensional representation also can alleviate the curse of dimensional-
ity and data sparsity problems suffered by traditional representations such
as bag-of-words and N-gram [66]. The essential idea of word embedding is
the distributional hypothesis that “you shall know a word by the company it
keeps” [13]. This suggests that a word has close relationships with its neigh-
boring words. For example, the phrases win the game and win the lottery
appear very frequently; thus the pair of words win and game and the pair
of words win and lottery could have very close relationship. When we are
only given the word win, we would highly expect the neighboring words to be
words like game or lottery instead of words as light or air. This suggests that
a good word representation should be useful for predicting its neighboring
words, which is the essential idea of Skip-gram [41]. In other words, the train-
ing objective of the Skip-gram model is to find word representations that are
useful for predicting the surrounding words in a sentence or a document. More
formally, given a sequence of training words w1, w2, . . . , wT , the objective of
the Skip-gram model is to maximize the average log probability

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logP (wt+j |wt) (11.20)

where c is the size of the training context (which can be a function of the
center word wt). Larger c results in more training examples and thus can lead
to a higher accuracy, at the expense of the training time. The basic Skip-gram
formulation defines P (wt+j |wt) using the softmax function:

P (wO|wI) =
exp(uTwOvwI )∑W
w=1 exp(uwTvwI )

(11.21)

where vw and uw are the “input” and “output” representations of w, and
W is the number of words in the vocabulary. Learning the representation is
usually done by gradient descent. However, Eq.(11.21) is impractical because
the cost of computing ∇ logP (wO|wI) is proportional to W, which is often
large. One way of making the computation more tractable is to replace the
softmax in Eq.(11.21) with a hierarchical softmax. In hierarchial softmax, the
vocabulary is represented as a Huffman binary tree with words as leaves. With
Huffman tree, the probability of P (wO|wI) is the probability of walking the
path from root node to leaf node wO given the word wI , which is calculated
as decision making in each node along the path with simple function. The
Huffman trees assign short binary codes to frequent words, and this further
reduces the number of output units that need to be evaluated. Another al-
ternative to make the computation tractable is negative sampling [41]. The
essential idea of negative sampling is that wt should be more similar with its
neighboring words say wt+j than randomly sampled words. Thus, the objec-
tive function of negative sampling is to maximize the similarity between wt
and wt+j while minimize the similarity between wt and randomly sampled
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words. With negative sampling, Eq.(11.21) is approximated as

log σ(uTWO
vwI ) +

1

K

K∑
i=1

log σ(−uTWi
vwI ) (11.22)

where K is the number of negative words sampled for each input word wI .
It is found that skip-gram with negative sampling is equivalent to implicitly
factorizing a word-context matrix, whose cells are the pointwise mutual infor-
mation (PMI) of the respective word and context pairs, shifted by a global
constant [34].

Instead of using the center words to predict the context (surrounding words
in a sentence), Continuous Bag-of-Words Model (CBOW) predicts the current
word based on the context. More precisely, CBOW uses each current word
as an input to a log-linear classifier with continuous projection layer, and
predict words within a certain range before and after the current word [39].
The objective function of CBOW is to maximize the following log-likelihood
function

1

T

T∑
t=1

logP (wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) (11.23)

and P (wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) is defined as

P (wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c) =
exp(uwt

T ṽt)∑W
w=1 exp(uwT ṽt)

(11.24)

with ṽt is the average representation of the contexts of wt, i.e., ṽt =
1
2c

∑
−c≤j≤c,j 6=0 vt+j .

Methods like skip-gram may do better on the analogy task, but they poorly
utilize the statistics of the corpus since they train on separate local context
windows instead of on global co-occurrence counts. Based on this observation,
GloVe proposed in [46] uses a specific weighted least squares model that trains
on global word-word co-occurrence counts and thus makes efficient use of
statistics. The objective function of GloVe is given as

min
∑
i,j

f(Xij)(w
T
i w̃j − logXij)

2 (11.25)

where Xij tabulate the number of times word j occurs in the context of word i.
wi ∈ Rd is word representation of wi and w̃j is separate context word vector.
f() is the weighting function.

Word embedding can capture syntactic and semantic meanings of words.
For example, it is found that vec(queen) is the closest vector representation to
vec(king) - vec(man) + vec(woman), which implies that word representation
learned by Skip-gram encodes semantic meanings of words. Word embedding
can also be used for document representation by averaging the word vectors of
words appearing in a document as the vector representation of the documents.
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Following the distributional representation idea of word embedding, many
network embedding algorithms are proposed. The essential idea of network
embedding is to learn vector representations of network nodes that are good
at predicting the neighboring nodes.

Since word representation learned by word embedding algorithms are low-
dimensional dense vectors that capture semantic meanings, they are widely
used as preprocessing step in deep learning methods such as recurrent neural
network and recursive neural networks. Each word will be mapped to vector
representation before it is used as input to deep learning models.

11.5.2 Recurrent Neural Networks

FIGURE 11.7: An illustration of RNN

Recurrent neural networks (RNN) are powerful concepts that allow the
use of loops within the neural network architecture to model sequential data
such as sentences and videos. Recurrent networks take as input a sequence of
inputs, and produce a sequence of outputs. Thus, such models are particularly
useful for sequence-to-sequence learning.

Figure 11.7 gives an illustration of the RNN architecture. The left part of
the figure shows a folded RNN, which has a self-loop, i.e., the hidden state h
is used to update itself given an input x. To better show how RNN works, we
unfold the RNN as a sequential structure, which is given in the right part of
Figure 11.7. The RNN takes a sequence, x1,x2, . . . ,xt, . . . ,xT as input, where
at each step t, xt is a d-dimensional feature vector. For example, if the input
is a sentence, then each word wi of the sentence is represented as a vector
xi using word embedding methods such as Skip-gram. At each time-step t,
the output of the previous step, ht−1, along with the next word vector in the
document, xt, are used to update the hidden state ht as

ht = σ(Whhht−1 + Whxxt) (11.26)

where Whh ∈ Rd×d and Whx ∈ Rd×d are the weights for inputs ht−1 and xt,
respectively. The hidden states ht is the feature representation of the sequence
up to time t for the input sequence. The initial state h0 are usually initialized
as all 0. Thus, we can utilize ht to perform various tasks such as sentence
completion and document classification. For example, for sentence completion
task, we are given a partial sentence as “The weather is ” and we want to
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(a) One GRU Cell (b) One LSTM Cell

FIGURE 11.8: An illustration of GRU and LSTM Cells

predict the next word. We can predict the next word as

yt = softmax(Wht + b), yt = arg maxyt (11.27)

where W ∈ RV×d is the weights of the softmax function with V being the size
of the vocabulary and b is the bias term. yt is the predicted probability vector
and yt is the predicted label. We can think of RNN models the likelihood
probability as P (yt|x1, . . . ,xt).

Training of RNN is usually done using Backpropagation Through Time
(BPTT), which back-propagates the error from time t to time 1 [70].

11.5.3 Gated Recurrent Unit

Though in theory, RNN is able to capture long-term dependency, in
practice, the old memory will fade away as the sequence becomes longer. To
making it easier for RNNs to capture long-term dependencies, Gated recurrent
units (GRU) [7] are designed in a manner to have more persistent memory.
Unlike RNN, which uses simple affine transformation of ht−1 and ht followed
by tanh to update ht, GRU introduces Reset Gate to determine if it want to
forget past memory and Update Gate to control if new inputs are introduced
to ht. The mathematical equations of how this is achieved are given as follows
and an illustration of a GRU cell is shown in Figure 11.8(a):

zt = σ(Wzxxt + Wzhht−1 + bz) (Update gate)

rt = σ(Wrxxt + Wrhht−1 + br) (Reset gate)

h̃t = tanh(rt �Uht−1 + Wxt) (New memory)

ht = (1− zt)� h̃t + zt � ht−1 (Hidden state) (11.28)

From the above equation and Figure 11.8(a), we can treat GRU as four fun-
damental operational stages, i.e., new memory, update gate, reset gate and
hidden state. A new memory h̃t is the consolidation of a new input word xt
with the past hidden state ht−1, which summarize this new word in light of
the contextual past. The reset signal rt is used to determining how important
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ht−1 is to the summarization h̃t. The reset gate has the ability to completely
diminish past hidden state if it finds that ht−1 is irrelevant to the computa-
tion of the new memory. The update signal zt is responsible for determining
how much of past state ht−1 should be carried forward to the next state. For
instance, if zt ≈ 1, then ht−1 is almost entirely copied out to ht. The hid-
den state ht is finally generated using the past hidden input ht and the new
memory generated h̃t with the control of update gate.

11.5.4 Long Short-Term Memory

Long-Short-Term-Memories, LSTMs [23], are another type variants of
RNN, which can also capture long-term dependency. Similar to GRUs, a
LSTM introduces more complex gates to control if it should accept new in-
formation or forget previous memory, i.e., input gate, forget gate, output gate
and new memory cell. The update rules of LSTMs are given as follows:

it = σ(Wixxt + Wihht−1 + bi) (Input gate)

ft = σ(Wfxxt + Wfhht−1 + bf ) (Forget gate)

ot = σ(Woxxt + Wohht−1 + bo) (Output gate)

gt = tanh(Wgxxt + Wghht−1 + bg) (New memory cell)

ct = ft � ct−1 + it � gt (Final memory cell)

ht = ot � tanh(ct) (11.29)

where it is the input gate, ft is the forget gate, ot is the forget fate, ct is the
memory cell state at t and xt is the input features at t. σ(·) means the sigmoid
function and � denotes the Hadmard product. The main idea of the LSTM
model is the memory cell ct, which records the history of the inputs observed
up to t. ct is a summation of – (1) the previous memory cell ct−1 modulated
by a sigmoid gate ft, and (2) gt, a function of previous hidden states and the
current input modulated by another sigmoid gate it. The sigmoid gate ft is
to selectively forget its previous memory while it is to selectively accept the
current input. it is the gate controlling the output. The illustration of a cell
of LSTM at the time step t is shown in Figure 11.8(b).

11.6 Generative Adversarial Networks and Variational
Autoencoder

In this section, we introduce two very popular deep generative models
proposed recently, i.e., generative adversarial networks and variational au-
toencoder.
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11.6.1 Generative Adversarial Networks

FIGURE 11.9: An illustration of the framework of GAN

Generative adversarial network (GAN) [16] is one of the most popular gen-
erative deep models. The core of a GAN is to play a min-max game between
a discriminator D and a generator G, i.e., adversarial training. The discrim-
inator D tries to differentiate if a sample is from real-world or generated by
the generator while the generator G tries to generate samples that can fool
the discriminator, i.e., make the discriminator believe that the generated sam-
ples are from real-world. Figure 11.9 gives an illustration of the framework of
GAN. The generator takes a noise z sampled from a prior distribution pz(z)
as input, and maps the noise to the data space as G(z; θg). Typical choices of
the prior p(z) can be uniform distribution or Gaussian distribution. We also
define a second multilayer perceptron D(x; θd) that outputs a single scalar.
D(x) represents the probability that x came from the real-world data rather
than generated data. D is trained to maximize the probability of assigning
the correct label to both training examples and samples from G. We simulta-
neously train G to minimize log(1−D(G(z))). In other words, D and G play
the following two-player minimax game with value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z) [log(1−D(G(z)))]

(11.30)
The training of GAN can be done using minibatch stochastic gradient descent
training by updating the parameters of G and D alternatively. After the model
is trained unsupervisedly, we can treat the discriminator as a feature extractor
as: The first few layers of D is to extract features from x while the last
few layers are to map the features to the probability that x is from real
data. Thus, we can remove the last few layers, then the the output of D is
the features extracted. In this sense, we treat GAN as unsupervised feature
learning algorithms though the main purpose of GAN is to learn p(x).

GAN is a general adversarial training framework, which can be used for
various domains by designing different generator, discriminator and loss func-
tion [6, 65, 74]. For example, InfoGAN [6] learns disentangled representation
by dividing the noise into two parts, i.e., disentangled codes c and incom-
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pressible noise z so that the disentangled codes c can control the properties
such as the identity and illumination of the images generated. SeqGAN [74]
models the data generator as a stochastic policy in reinforcement learning and
extends GAN for text generation.

11.6.2 Variational Autoencoder

FIGURE 11.10: An illustration of the framework of VAE

Variational Autoencoder (VAE) [30] is a popular generative model for un-
supervised representation learning. It can be trained purely with gradient-
based methods. Typically, a VAE has a standard autoencoder component
which encodes the input data into a latent code space by minimizing recon-
struction error, and a Bayesian regularization over the latent space, which
enforces the posterior of the hidden code vector matches a prior distribution.
Figure 11.10 gives an illustration of an VAE. To generate a sample from the
model, the VAE first draws a sample z from the prior distribution pθ(z). The
sample z is used as input to a differentiable generator network g(z). Finally,
x is sampled from a distribution pθ(x|g(z)) = pθ(x|z). During the training,
the approximate inference network, i.e., encoder network qφ(z|x) is then used
to obtain z and pθ(x|z) is then viewed as a decoder network. The core idea of
variational autoenoder is that they are trained by maximizing the variational
lower bound L(θ, φ;x):

L(θ, φ;x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)] ≤ log pθ(x)
(11.31)

where DKL(qφ(z|x)||pθ(z)) is the KL divergence which measures the similarity
of two distributions qφ(z|x) and pθ(z). φ and θ are the variational parameters
and generative parameters, respectively. We want to differentiate and optimize
the lower bound w.r.t both the φ and θ. However, directly using gradient esti-
mator for the above objective function will exhibits high variance. Therefore,
VAE adopts the reparametric trick. That is, under certain mild conditions for
a chosen approximate posterior qφ(z|x), the random variable z̃ ∼ qφ(z|x) can
be parameterized as

z̃ = gφ(ε,x) with ε ∼ p(ε) (11.32)
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where gφ(ε,x) is a differentiable transformation function of an noise variable
ε. The nonparametric trick is also shown in the Figure 11.10. With this tech-
nique, the variational lower bound in Eq.(11.31) can be approximated as

LA(θ, φ;x) =
1

L

L∑
l=1

log pθ(x, z
(l))− log qφ(z(l)|x)

z̃(l) = gφ(ε(l),x) with ε(l) ∼ p(ε)

(11.33)

Then the parameters can be learned via stochastic gradient descent efficiently.
It is easy to see that the encoder is a feature extractor which learns latent
representation for x.

11.7 Discussion and Further Readings

We have introduced representative deep learning models for feature engi-
neering. In this section, we’ll discuss how they can be used for hierarchical
representation learning and disentangled representation, and how they can be
used for popular domains such as text, image and graph.

TABLE 11.1: Hierarchical and Disentangled Representation Learning

Method Hierarchical Fea. Rep. Disentangled Fea. Rep.
RBM/DBM [59] [48]

DBN [33] N/A
AE/DAE/SDAE [37] [28]

RNN/GRU/LSTM [73, 68] [54, 11]
CNN [12, 14] [49, 25]
GAN [47] [6, 38]
VAE [75] [72, 54]

Hierarchical Representation Generally, hierarchical representation is
to learn features of hierarchy and further be able to combine top-down and
bottom up processing of an image (or text). For instance, lower layers could
support object detection by spotting low-level features indicative of object
parts. Conversely, information about objects in the higher layers could resolve
lower-level ambiguities in the image or infer the locations of hidden object
parts. Features at different hierarchy may good for different tasks. The high-
level features captures the main objects, resolve ambiguities and thus are good
for classification while mid-level features kept many details and may be good
for segmentation. Hierarchical feature representation is very common in deep
learning models. We list some representative literature of how the introduced
model can be used for hierarchical feature learning in Table 11.1
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Disentangled Representation Disentangled representation is a popular
way to learn explainable representation. The majority of existing representa-
tion learning framework learns representation h ∈ Rd×1 that is difficult to ex-
plain, i.e., the d-latent dimensions are entangled together and we don’t know
the semantic meaning of the d-dimensions. Instead, disentangled representa-
tion learning tries to disentangle the latent factors so we know the semantic
meaning of the latent dimensions. For example, for handwritten digit such as
MNIST dataset, we may want to disentangle the digit shape from writing style
so that some part of h controls digit shapes while the other part represents
writing style. The disentangled representation not only gives explanation for
latent representation but also helps to generate controlled realistic images. For
example, by changing the part of codes that controls digit shape, we can gen-
erate new images of target digit shape using generator with this new latent
representation. Therefore, disentangled representation learning is attracting
increasing attention. Table 11.1 also list some representative deep learning
methods for disentangled representation learning. This is still a relatively new
direction that needs further investigation.

TABLE 11.2: Deep Learning Methods for Different Domains

Method Text Image Audio Linked Data (Graph)
RBM/DBM [58, 57] [57] [9] [67]

DBN [52] [33] [42] N/A
AE/DAE/SDAE [3] [63] [44] [64]

CNN [29] [45, 19, 71] [1] [10]
Word2Vec [41, 35] N/A N/A [61, 66]

RNN/GRU/LSTM [60, 40, 27] [2] [17, 50] N/A
GAN [74] [6, 47] [74] N/A
VAE [5, 26] [30, 18] [24] N/A

Deep Feature Representation for Various Domains Many deep
learning algorithms were initially developed for specific domains. For example,
CNN is initially developed for image processing and Word2Vec is initially pro-
posed for learning word representation. As the great success of these methods,
they are further developed to be applicable to other domains. For example, in
addition to image, CNN has also been successfully applied on texts, audio and
linked data. Each domain has its own unique property. For example, text data
are inherently sequential and graph data is non-i.i.d. Thus, directly applying
CNN is impractical. New architecture are proposed to adapt CNN for these
domains. The same holds for the other deep learning algorithms. Therefore,
we summarize the application of the discussed deep learning models on four
domains in Table 11.2. We encourage interested users to read these papers for
further understanding.

Combining Deep Learning Models We have introduced various deep
learning models, which can be applied for different domains. For example,
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LSTM is mainly used for dealing sequential data such as texts while CNN is
powerful for images. It is very common that we need to work on tasks which
are related to different domains. In such cases, we can combine different deep
learning models to propose a new framework that can be applifed for the task
at the hand. For example, for information retrieve task that given a text query,
we want to retrieve images marches the query. We will need to use LSTM or
Word2Vec to learn representation that captures the semantic meanings of the
query. At the same time, we need to use CNN to learn features that describe
the image. We can then train LSTM and CNN in a way such that the similarity
of the representations for the matched query-image pairs are maximized while
the similarity of the representations for the non-marched query-image pairs
are minimized. Another example is veido action recognition, where we want
to classify the action of the video. Since the video is composed of frames
and nearby frames have dependency. Thus, a vidao is inherently a sequential
data and LSTM is a good fit for modeling such data. However, LSTM is
not good at extracting images. Therefore, we will first need to use CNN to
extract features from each frame of the video, which are then used as input
to LSTM for learning representation of the video [68]. Similarity, for image
captioning, we can use CNN to extract features and use LSTM to generate
image caption based on the image features [71]. We just list a few examples
and there are many other examples. In general, we can treat deep learning
algorithms as feature extracting tools that can be used to extract features
from certain domains. We can then design loss function on top of these deep
learning algorithms for the problem we want to study. One thing to note is
that, when we combine different models together, they are trained end-to-end.
In other words, we don’t train these models separately. In stead, we treat the
new model as a unified model. This usually gives better performance than
training each model separately and then combine them together.
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